Two Systems of Non-Symbolic Numerical Cognition

نویسنده

  • Daniel C. Hyde
چکیده

Studies of human adults, infants, and non-human animals demonstrate that non-symbolic numerical cognition is supported by at least two distinct cognitive systems: a "parallel individuation system" that encodes the numerical identity of individual items and an "approximate number system" that encodes the approximate numerical magnitude, or numerosity, of a set. The exact nature and role of these systems, however, have been debated for over a 100-years. Some argue that the non-symbolic representation of small numbers (<4) is carried out solely by the parallel individuation system and the non-symbolic representation of large numbers (>4) is carried out solely by the approximate number system. Others argue that all numbers are represented by the approximate number system. This debate has been fueled largely by some studies showing dissociations between small and large number processing and other studies showing similar processing of small and large numbers. Recent work has addressed this debate by showing that the two systems are present and distinct from early infancy, persist despite the acquisition of a symbolic number system, activate distinct cortical networks, and engage differentially based attentional constraints. Based on the recent discoveries, I provide a hypothesis that may explain the puzzling findings and makes testable predictions as to when each system will be engaged. In particular, when items are presented under conditions that allow selection of individuals, they will be represented as distinct mental items through parallel individuation and not as a numerical magnitude. In contrast, when items are presented outside attentional limits (e.g., too many, too close together, under high attentional load), they will be represented as a single mental numerical magnitude and not as distinct mental items. These predictions provide a basis on which researchers can further investigate the role of each system in the development of uniquely human numerical thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks, Penalty Logic and Optimality Theory

Ever since the discovery of neural networks, there has been a controversy between two modes of information processing. On the one hand, symbolic systems have proven indispensable for our understanding of higher intelligence, especially when cognitive domains like language and reasoning are examined. On the other hand, it is a matter of fact that intelligence resides in the brain, where computat...

متن کامل

Improving Preschoolers’ Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training

The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on differen...

متن کامل

Non-symbolic arithmetic in adults and young children.

Five experiments investigated whether adults and preschool children can perform simple arithmetic calculations on non-symbolic numerosities. Previous research has demonstrated that human adults, human infants, and non-human animals can process numerical quantities through approximate representations of their magnitudes. Here we consider whether these non-symbolic numerical representations might...

متن کامل

Count on dopamine: influences of COMT polymorphisms on numerical cognition

Catechol-O-methyltransferase (COMT) is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory, and numerical cognition. Elementary school children from 2th to 6th grades ...

متن کامل

Priming reveals differential coding of symbolic and non-symbolic quantities.

Number processing is characterized by the distance and the size effect, but symbolic numbers exhibit smaller effects than non-symbolic numerosities. The difference between symbolic and non-symbolic processing can either be explained by a different kind of underlying representation or by parametric differences within the same type of underlying representation. We performed a primed naming study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011